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In this paper, we exploit an integration between Compressive sensing 
(CS) and the random mobility of sensors in distributed mobile sensor 
networks (MSNs). A small number of distributed mobile sensors are 
deployed randomly in a sensing area to observe a large number of 
positions. The distributed mobile sensors sparsely sample the sensing 
area for data collection. At each sampling time, the sensors collect data 
at their random positions and exchange their readings to the others 
through their neighbors within the sensor transmission range to form 
one CS measurement at each sensor. After a certain number of rounds 
for moving, sensing and sharing data, each mobile sensor creates a 
sufficient CS measurements to be able to reconstruct all readings from 
all positions that need to be observed. Network performance is analyzed 
considering the number of sensors deployed in the networks, the 
convergence time and the sensor transmission range. Expressions for 
transmission power consumption are formulated and optimal low 
power cases are identified.
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1 Introduction

1.1 Motivation

Energy efficiency is the most important issue for mo-
bile sensor networks (MSN) that can be useful for
measuring data in many applications including envi-
ronmental monitoring, event detection, intrusion de-
tection, etc. These networks are constructed from
sensors, control algorithms and other dynamic factors
which depend on specific purposes or application sce-
narios [1, 2]. We define the vector X = [x1 x2 . . .xN ]T

to represent all sensor readings from the locations to
be observed. These readings are typically highly cor-
related and compressible and could be an object for
energy saving.

Compressive sensing (CS) [3, 4, 5] offers to sam-
ple and to reconstruct sparse or compressible signals
using fewer samples than the Nyquist-Shannon the-
orem would suggest. CS can be applied effectively
with wireless sensor networks (WSN) and MSNs to
reduce the amount of data and power required by
the network. The technique can recover all data
from X based on a small number of CS measure-
ments (Y = [y1 y2 . . . yM ]T ) compared to the number
of nodes or positions (M � N ) as X̂ = argmin ‖ X ‖1

, subject to Y = ΦX, where Φ is the measurement ma-
trix, also called routing matrix in wireless networks.
Each CS measurement can be collected from all sens-
ing nodes or from some random nodes.

In this paper we propose a novel frame work that
exploits CS sampling by mobile sensors deployed ran-
domly in a sensing area. At each sampling time, each
sensor samples its own data as xi which is shared with
others L connected sensor nodes in the MSN. We as-
sume the mobile sensors move into random positions
in the area. After each round of moving, data sam-
pling, and sharing, a linear combination of readings is
computed as yi =

∑L
j=1 xj . To achieve a desired error-

target, each mobile sensor needs to moveM times and
share data to obtain M CS measurements (Y ∈ RM ).
A CS recovery algorithm can be applied to recon-
struct all readings from positions in the sensing area
(X̂ ∈ RN ).

With a set transmission range, R, mobile sensors
may move out of range and become disconnected
from the group. With the proposed method the un-
equal CS measurements do not negatively impact CS
performance due to a sparse binary measurement ma-
trix.
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1.2 Related work

The integration between CS and data collection meth-
ods in WSNs is being exploited effectively [6, 7].
It offers to reconstruct all readings from the net-
works based on a small number of CS measurements.
Each CS measurement is collected from some ran-
dom sensors. Some data collection methods utiliz-
ing CS are proposed as energy efficient algorithms to
reduce power consumption for sensors. In [8, 9, 10]
random walks with CS provide distributed routing
methods for WSNs. Cluster based [11, 12] and tree
based [13, 14] data collection methods significantly
show the power reduced based on the combination
with CS.

Recent research studies have exploited the mobil-
ity of sensors and CS. Wang [15] applied CS to mon-
itoring vehicle networks. Mostofi built maps in mo-
bile networks [16] and robot networks [17] while the
mobile sensors and robots were deployed outside the
sensing areas. Huang [18] reconstructed a scalar field
using MSNs and information fusion. Nguyen [19, 20]
used flocking control to lead a group of distributed
robots to sample data and applied CS to recover data
from the field based on a certain number of CS mea-
surements.

The previous work has not focused on the integra-
tion between the random mobility of sensors and CS.
In this paper, we complete our previous work [21].
The mobile sensors move only a certain number of
times and share data among them to generate a de-
sired number of CS measurements. Each sensor can
reconstruct all raw data based on the measurements.
The important results in this paper include:
1. A proposed new distributed compressive mobile
sensing data collection method.
2. Formulations and analysis for estimating network
transmission power consumption.
3. Analysis and simulation of factors such as the num-
ber of mobile sensors, the convergence time and the
sensor transmission range leading to choices of mini-
mizing power consumption.

2 Problem Formulation

2.1 Network Model

We assume an area to be observed with N unknown
positions corresponding to N readings for collection.
There are L mobile sensors randomly distributed in
the sensing area to sense data. They are allowed to
move with random direction and random velocities.
The connections between sensors are created by radio
links having a maximum sensor transmission range
denoted as R. An appropriate value of R is chosen for
all sensors. As shown in Figure 1, all mobile sensors
are connected as an undirected graph G(L,E), where
L is the set of vertices representing the mobile sensors
and E is the set of edges representing the connections
between sensors.

We further assume that the distributed sensors
move randomly in the area. Each mobile sensor shares
data to the others through its neighbors within the
transmission range R.

2.2 Compressive Sensing (CS)

Compressed Sensing techniques [3, 4, 5] bring us
amazing work to recover a compressible signal from
undersampled random projections. They are also
called measurements. A compressible vector signal
X ∈ RN (X = [x1 x2 . . .xN ]T ) is k-sparse (X has k non
zero elements) or dense but sparse in Ψ domain X =
ΨΘ (where Θ is k-sparse vector) will be sampled and
then recovered precisely with CS algorithm. The huge
gain when we apply CS is the number of measure-
ments are much less than the number of original vec-
tor values. Vector Y, called the measurement vec-
tor, contains data sampled from N sensor readings;
Y ∈ RM (Y = [y1 y2 . . . yM ]T ), where M �N .

Signal Sampling: The random measurements are
generated by Y = ΦX where Φ ∈ RM×N is often full-
Gaussian matrices or binary matrices, called projec-
tion matrices. Y ∈ RM is the measurement vector with
yi =

∑n
j=1ϕi,jxj , where ϕi,j are all entries on the ith

row of our projection matrix Φ .
Signal Recovery: The number of CS measure-

ments required to reconstruct the original signal per-
fectly with high probability is M = O (k log N/k) fol-
lowing the l1 optimization problem given by [3].

X̂ = argmin ||X ||1, subject to Y = ΦX, (1)

or in case we need sparsifying matrix to have X
sparse in Ψ domain (Ψ can be Wavelet or DCT de-
pending on our signal properties) as follows.

Θ̂ = argmin ||Θ ||1, subject to Y = ΦΨΘ, (2)

where ||Θ ||1 =
∑N
i=1 |Θi | . The l1 optimization prob-

lem can be solved with linear programming tech-
niques such as Basis Pursuit (BP) [3].

In reality, we have to consider the noise while sam-
pling and sending the measurements (in our case we
collect measurements and send to the base-station) :
Y = ΦX+ e , with ||e ||2 < ε and recover

X̂ = argmin ||X′ ||1, subject to ||Y = φX′ ||2 < ε. (3)

2.3 Data Collection in Distributed MSNs
utilizing CS

The idea of applying CS into MSNs is that the sensing
field can be sampled randomly based on the mobil-
ity of mobile sensors randomly deployed in the field.
In general, each CS measurement is a collection from
some random positions as shown in Figure 2. Lmobile
sensors are deployed randomly in the sensing area
that they can collect sensing data randomly. If these
sensors exchange their own data to each other, they
can all achieve the data sampled randomly as shown
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Figure 1: Sparse sampling a square sensing area dimensioned [0,100]2 units: one CS measurement created by
a fully connected MSN with 50 distributed mobile sensors.

in Figure 2. At this point, one CS measurement is
collected at each distributed mobile sensor. After M
moving steps, each sensor has M measurements. This
number of measurements defined in CS background
in Section 2.2 helps to reconstruct all sensory readings
from N positions in the area.

After M periods of time, L distributed mobile sen-
sors visit approximately N unknown positions. The
readings are contained in vector X which is compress-
ible or sparse in proper domains as

X = ΨΘ, (4)

where Θ = [θ1θ2 . . .θN ]T has k non-zero elements and

|θ1| ≥ |θ2| ≥ ... ≥ |θN |. (5)

Ψ referred to as the sparsifying matrix, is an orthog-
onal basis of RN . If X is a k-sparse vector, Ψ is an
identity matrix. Otherwise, Ψ can be chosen from an-
other domain such as wavelet, DCT (discrete cosine
transform), etc. In order to verify this problem, Fig-
ures 3 and 4 are provided. All raw sensor readings
from 1000 points of interest are shown in Figure 3.
This real data is not sparse but it is highly correlated
due to the positions next to each other. DCT Ψ ma-
trix has been chosen to sparsify the real data. Figure 4
shows all the coefficients in DCT domain. We can see
that signal energy would be reduced following Equa-
tion 5.

At time instant t, mobile sensor l at position i col-
lects sensory data xli (i = 1, . . . N ). All L mobile sen-
sors share their readings (xli ), identified by the corre-
sponding position indices, with the other mobile sen-
sors through their neighbors as shown in the graph
G(L,E). After a convergence time 1, denoted as I , each
mobile sensor has one CS measurement as a sum of L
sensor readings

yt =
L∑
l=1

φtix
l
i + et , (6)

where et is additive noise dependent on the system.
φti is a binary vector (dimensioned 1×N ) that repre-
sents which positions are sampled at time instant t. It
is also the tth row in the measurement matrix ΦM×N
after M periods of time. The total measurements col-
lected at each sensor are

Y = ΦX+ e. (7)

According to [22], the number of measurements re-
quired to reconstruct perfectly all the raw reading
from the network is

M = O(k log(N/k)), (8)

where k < M � N . So instead of collecting N read-
ings, one for each sampling position in the sensing
area, each mobile sensors needs only M measure-
ments and reconstructs all data from the area. If the
network is fully connected all the time, each sensor
has the same binary measurement matrix Φ with a
constant row weight of L.

Φ =


1 0 0 1 0 1 ... 0
0 1 1 0 0 0 ... 1
0 0 0 1 1 0 ... 1
... ... ... ... ... ... ... ...
1 0 1 0 0 1 ... 0


M×N

(9)

The restricted isometry property (RIP) of the sparse
binary matrix has been studied in [23] where it is
shown that the matrix can satisfy RIP and therefore
can be used as an efficient measurement matrix. This
matrix (ΦM×N ) can perform as well as a full Gaussian
matrix for the CS recovery process. ε is set as ε <‖ e ‖2.
The recovery algorithm is addressed as

X̂ = argmin ‖ X ‖1, subject to ‖ Y−ΦX ‖2< ε. (10)
1Convergence time is the average number of times each sensor updates data from the neighbors until it achieves a CS measurement

collected from all connected sensors. Convergence time is a measure of how fast a group of sensors can create one CS measurement.

www.astesj.com 247

http://www.astesj.com


M.T. Nguyen / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 245-253 (2017)

 

 Real communication distance (r) 

Mobile sensors move to different positions 

Random positions 

CS measurements 

Figure 2: Two CS measurements are created (in blue and yellow) while the mobile sensors are moving in the
sensing field.

Figure 3: Real temperatures collected from 1000 random positions in a sensing field

Figure 4: 1000 transformed coefficients using DCT domain
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3 CompressiveMobile Sensing Al-
gorithm (CMS)

for t = 1 to M do
L distributed mobile sensors move and
sample a sensing area at M periods of time,
and create 1 CS measurement at each time
instant t

while (Number of times sharing data < I) do
for i = 1 to L do

Each sensor out of L mobile sensors
has two main activities:

- send/receive data to/from
neighbors

- add/forward new received data
from/to neighbors

end
New data is detected by its attached
indices

end
One CS measurement is created following
Eq. 6

end
M CS measurements are created for the CS data
reconstruction following Eq. 10

Algorithm 1: CMS Algorithm

As mentioned, each distributed mobile sensor
must collect M measurements to be able to recon-
struct all readings from N positions in the sensing
area. With L distributed mobile sensors fully con-
nected as given by the graph G(L,E) and based on the
sensor transmission range R, the proposed algorithm
is summarized as Algorithm 1.

Due to the limitation of R and sensor motion, some
mobile sensors maybe disconnected from others and
separated at time instant t + k. This means that the
measurements yt+k collected at each sensor are not
from all L sensors. This does not affect CS perfor-
mance when the measurement matrix has different
row weights [22]. By applying CS, each mobile sen-
sor only has to visit M positions to collect all data
from the sensing area (M � N ). This significantly re-
duces consumed power not only for communications
but also for sensor movements.

4 Analysis of Power Consumption
for Communications

The total consumed power for communications in the
network consists of three main elements: the intra-
neighborhood consumed power denoted as Pnei , the
convergence time I and the number of measurements
required (M). The total power consumption can be
calculated as follows

Ptotal = Pnei × I ×M. (11)

Pnei represents the communication cost associated
with L mobile sensors transmitting data to their

neighbors and can be calculated as

Pnei =ω ×Rα ×L, (12)

where ω is the average number of neighbors of each
sensor corresponding to the available communication
links, and α is the path loss exponent. It is shown in
[24] that α = 2 and α = 4 for free space and multi-
path fading channels, respectively. We choose α = 2
throughout this paper. In the following sections both
circular and square sensing areas are examined and
analyzed.

4.1 Circular Sensing Area

If sensors are randomly distributed in a circular sens-
ing area with radiusR0, the average number of sensors
deployed in the area covered by each sensor transmis-
sion range R can be found as

β =
L

πR2
0

×πR2, (13)

where L
πR2

0
is the sensor density. We can calculate ap-

proximately the mean value of ω as

ω = (β − 1) = (L
R2

R2
0

− 1). (14)

Hence, the total consumed power for sharing data be-
tween L sensors is calculated as

Ptotal = (L
R2

R2
0

− 1)R2LIM. (15)

4.2 Square Sensing Area

We assume a square sensing area with dimensions
H × H . From Equation (13), the average number of
sensors deployed in the area covered by each sensor
transmission range R is β = L

H2 ×πR2. Hence

ω = (
πLR2

H2 − 1). (16)

In Figure 6, both the true and the reconstructed
data are shown together to illustrate the accuracy of
the CS recovery algorithm with the number of CS
measurements given by M = 300 stored at each sen-
sor. The larger the number of measurements, the bet-
ter the accuracy of the reconstruction.

The total consumed power for sharing data for L
sensors to achieve M converged CS measurements in
the square sensing area can be written as

Ptotal = (
πLR2

H2 − 1)R2LIM. (17)

The convergence time I depends on both the sensor
density ( L

πR2
0

or L
H2 ) and the connections between the

sensors. The smaller the number of mobile sensors,
the smaller the convergence time. However, since the
transmission range R determines the connections, in-
creasing the transmission range R to maintain the con-
nections increases the transmission power consump-
tion. This means that increasing or reducing R may
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Figure 5: Comparison of three measurement matrices created through the sampling process based on signal
reconstruction error.
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15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
89.5

90

90.5

91

91.5

92

92.5

93

93.5

94

Convergence time with L = 100 mobile sensors

Communication range [units]

C
o
n
v
er

g
en

ce
 t
im

e 
[u

p
d
at

es
]

Figure 7: The average convergence time versus different transmission ranges with 100 mobile sensors deployed
in a square sensing area.
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Figure 8: Total power consumption for communications versus different transmission ranges in the square
sensing area.
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Figure 9: Total communication power consumption with L = 100 mobile sensors deployed in the square sens-
ing area and transmission range R∗ = 15.

increase or reduce the number of connections between
the sensors in each neighborhood. Increasing the
connections between sensors reduces the convergence
time I . Thus a trade-off exists between these various
parameters.

5 Simulation Results

We assume a fixed number of 50 or 100 mobile sen-
sors deployed in a square sensing area of 100 square
units (H = 100). We also assume that there are ap-
proximately 1000 positions where temperature needs
to be observed. We consider the transmission range
of 15 ≤ R ≤ 20 units in which the network is always
connected. Without loss of generality, it is assumed
that the power for transmitting 1 unit of data is 1 unit
of power. The simulations were performed using real
temperature sensor data from Sensorscope [25]. The
reconstruction error related to CS signal recovery is

the normalized reconstruction error given as ‖X−X̂‖2‖X‖2
.

Figure 5 compares the ability to reconstruct data
in the CS recovery process between three measure-
ment matrices. Both sparse binary matrices with row
weight L = 50 and 100 are shown to perform as well

as the full Gaussian matrix which corresponds to full
sampling.

Figure 7 illustrates that as R is increased, the con-
vergence time I is reduced as discussed in Section 4.
Figure 8 depicts the corresponding total power con-
sumption in the network, and we see the power con-
sumption is reduced as R is decreased. R cannot be
reduced without limit as at some point the L sensors
will become disconnected and fragmented resulting
in an excessively sparse measurement matrix.

We chose the smallest transmission range R∗ = 15
and the corresponding convergence time I ∗ = 94 for
the optimal total power consumption for sensor com-
munications in the network in both analysis and sim-
ulation which are shown in Figure 9.

Finally, in Figure 6, both the true and the recon-
structed data are shown together to the show the ac-
curacy of the CS recovery algorithm at the number of
CS measurements as M = 300 stored at each sensor.
The more number of measurements, the better accu-
racy of the reconstruction.
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Figure 10: Final result of recovering data in a 3-D map compared to the true map; M = 300 CS measurements
are collected.

6 Conclusions and Future Work

This paper proposed a framework for distributed
MSNs utilizing CS for efficient data sensing and re-
covery and investigated the dependence of power con-
sumption on various MSN parameters. The algorithm
exploits the random mobility of sensors for sparse
sampling the sensing area. CS based sampling and
reconstruction of the sensory data with a sparse bi-
nary measurement matrix were compared with dense
Gaussian and shown to be equal under the simulation
conditions, illustrating that CS may be used to ad-
vantage in MSNs. Expressions for transmission power
consumption in the MSN were developed, simulated,
and analyzed. The results show the trade-off be-
tween the number of sensors, the transmission range,
and the convergence time that can further reduce the
power consumption for data transmission in the net-
works.

In future work, we consider the correlation of
sensing data in the field. This could help to improve
the performance of CS in signal recovery.
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